Phloretin-induced changes in ion transport across lipid bilayer membranes

نویسندگان

  • E Melnik
  • R Latorre
  • J E Hall
  • D C Tosteson
چکیده

Phloretin, the aglucone derivative of phlorizin, increases cation conductance and decreases anion conductance in lipid bilayer membranes. In this paper we present evidence that phloretin acts almost exclusively by altering the permeability of the membrane interior and not by modifying the partition of the permanent species between the membrane and the bulk aqueous phases. We base our conclusion on an analysis of the current responses to a senylborate, and the cation complex, peptide PV-K+. These results are consistent with the hypothesis that phloretin decreases the intrinsic positive internal membrane potential but does not modify to a great extent the potential energy minima at the membrane interfaces. Phloretin increases the conductance for the nonactin-K+ complex, but above 10(-5) M the steady-state nonactin-K+ voltage-current curve changes from superlinear to sublinear. These results imply that, above 10(-5) M phloretin, the nonactin-5+ transport across the membrane becomes interfacially limited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permeation of phloretin across bilayer lipid membranes monitored by dipole potential and microelectrode measurements.

The transmembrane diffusion of phloretin across planar bilayer lipid membranes is studied under steady-state conditions. Diffusion restrictions and adsorption related effects are measured independently. The adsorption of aligned phloretin dipoles generates a change in the intrinsic dipole potential difference between the inner and outer leaflets of the lipid bilayer. It is monitored by capaciti...

متن کامل

Water channel formation and ion transport in linear and branched lipid bilayers.

Using molecular dynamics simulations, we studied the influence of methyl chain branching on transmembrane potential induced formation of water channels in lipid bilayers and ion transport. We compared the response of a bilayer lipid that has multiple methyl branches diphytanoylphosphatidylcholine (DPhPC) with its straight-chain counterpart dipalmitoylphosphatidylcholine (DPPC) to a transmembran...

متن کامل

Instructions for use Title

A photoresponsive ion carrier based on calix[4]arene was synthesized for the control of Na+ flux across lipid bilayer membranes by visible light. Calix[4]arene was chosen as a basic skeleton of a photoresponsive ion carrier because its ether derivatives are known to act as Na+ ion carriers in lipid bilayer membranes. For the synthesis of a photoresponsive carrier, dimethylaminoazobenzene was in...

متن کامل

Calixarene-based Photoresponsive Ion Carrier for the Control of Na + Flux across a Lipid Bilayer Membrane by Visible Light

A photoresponsive ion carrier based on calix[4]arene was synthesized for the control of Na+ flux across lipid bilayer membranes by visible light. Calix[4]arene was chosen as a basic skeleton of a photoresponsive ion carrier because its ether derivatives are known to act as Na+ ion carriers in lipid bilayer membranes. For the synthesis of a photoresponsive carrier, dimethylaminoazobenzene was in...

متن کامل

Arachidonic acid-induced channel- and carrier-type ion transport across planar bilayer lipid membranes.

Transmembrane ion transport by arachidonic acid (AA) through bilayer lipid membranes (BLMs) was investigated by means of electrochemical measurements to provide a basis for designing a sensor membrane. We found that AA induces a channel-type current, in addition to a carrier-type current, across planar BLMs. A linear relation between the logarithmic value of the AA concentration and the current...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 69  شماره 

صفحات  -

تاریخ انتشار 1977